
Microsoft Internet
Extensions for

Win32

Revision 0.54 (DRAFT)
March 23, 1995

© 1995 Microsoft Corporation
All rights reserved. All info contained herein is the sole 

property of Microsoft Corp.



Internet Extensions for Win32 Preliminary Draft: Subject to Change

Disclaimer

This documentation is an early release of the final product documentation.  It is meant to 
accompany software that is still in development.  Some of the information in this 
document may be inaccurate or may not be an accurate representation of the functionality
of the final product.  Microsoft assumes no responsibility for any damages that might 
occur either directly or indirectly from these inaccuracies.

This specification and any accompanying software provided by Microsoft is for your 
personal use only and may not be copied or distributed.

Microsoft may have patents or pending patent applications, trademarks, copyrights, or 
other intellectual property rights covering subject matter in this document.  The furnising
of this document does not give you any license to these patents, trademarks, copyrights, 
or other intellectual property rights except as expressly provided in any written license 
agreement from Microsoft.

2



Internet Extensions for Win32 Preliminary Draft: Subject to Change

Microsoft Internet Extensions for Win32

Table of Contents

1. Background and Motivation_______________________________________________
1.1 Goals_______________________________________________________________________

1.2 Non-Goals___________________________________________________________________

2. API Overview___________________________________________________________
2.1 Handles_____________________________________________________________________

2.2 MIME Integration____________________________________________________________

2.3 Error Handling______________________________________________________________

2.4 Multi-threaded Access_________________________________________________________

2.5 Canceling Requests___________________________________________________________

2.6 Unicode Support_____________________________________________________________

3. General Internet APIs____________________________________________________
3.1 InternetOpen________________________________________________________________

3.2 InternetCloseHandle__________________________________________________________

3.3 InternetConnect______________________________________________________________

3.4 InternetOpenUrl*____________________________________________________________

3.5 InternetReadFile_____________________________________________________________

3.6 InternetWriteFile_____________________________________________________________

3.7 InternetFindNextFile__________________________________________________________

3.8 InternetQueryOption*________________________________________________________

3.9 InternetSetOption*___________________________________________________________

3.10 InternetGetLastResponseInfo__________________________________________________

3.11 InternetSetStatusCallback*___________________________________________________

4. Mime APIs_____________________________________________________________
4.1 MimeCreateAssociation_______________________________________________________

4.2 MimeDeleteAssociation________________________________________________________

4.3 MimeGetAssociation__________________________________________________________

5. FTP APIs______________________________________________________________
5.1 FtpFindFirstFile______________________________________________________________

5.2 FtpGetFile___________________________________________________________________

3



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.3 FtpPutFile___________________________________________________________________

5.4 FtpDeleteFile________________________________________________________________

5.5 FtpRenameFile_______________________________________________________________

5.6 FtpOpenFile_________________________________________________________________

5.7 FtpCreateDirectory___________________________________________________________

5.8 FtpRemoveDirectory__________________________________________________________

5.9 FtpSetCurrentDirectory_______________________________________________________

5.10 FtpGetCurrentDirectory______________________________________________________

5.11 FtpCommand_______________________________________________________________

6. Gopher APIs____________________________________________________________
6.1 GopherCreateLocator_________________________________________________________

6.2 GopherGetLocatorType_______________________________________________________

6.3 GopherFindFirstFile__________________________________________________________

6.4 GopherOpenFile_____________________________________________________________

6.5 GopherGetAttribute__________________________________________________________

7. HTTP APIs_____________________________________________________________
7.1 HttpOpenRequest____________________________________________________________

7.2 HttpAddRequestHeaders______________________________________________________

7.3 HttpSendRequest_____________________________________________________________

7.4 HttpQueryInfo_______________________________________________________________

8. Archie APIs____________________________________________________________
8.1 ArchieFindFirstFile*__________________________________________________________

9. Structure Definitions_____________________________________________________
9.1 GOPHER_FIND_DATA_______________________________________________________

9.2 GOPHER_ATTRIBUTE_TYPE________________________________________________

9.3 ARCHIE_FIND_DATA_______________________________________________________

4



Internet Extensions for Win32 Preliminary Draft: Subject to Change

1Background and Motivation
This specification describes the Microsoft Internet Extensions for Win32, an extension to the Win32 API 
set which allow Win32 applications easy access to common Internet protocols.  The Internet Extensions 
for Win32 abstract the Gopher, FTP (File Transfer Protocol), Archie, and HTTP (HyperText Transfer 
Protocol, the basis of the World Wide Web or “WWW”) protocols into easy-to-use, task focused 
interfaces which significantly simplify application use of the Internet.  MIME support is also included to 
provide a single “registry” for Internet applications to access  

These APIs are exported from a single DLL called wininet.dll.  Initially, the APIs will be shipped 
independently of any operating system through channels such as MSDN, Compuserve, and of course on 
the Internet itself.  ISVs will be granted rights to redistribute wininet.dll with their applications, following
the model of Win32s.  Over the long term, the APIs described in this specification are expected to be 
folded into all Microsoft operating systems.

1.1Goals

The high-level goal of the Internet Extensions for Win32 is to make it easy for applications to enable 
access to the Internet.  This is achieved through a number of specific goals:

· Free applications from needing to embed knowledge of TCP/IP and Windows Sockets.  By 
abstracting the Internet protocols into task-oriented APIs, the Internet Extensions for Win32 free 
applications from having to write Windows Sockets code or know about the complex TCP/IP 
protocol.  One or several Windows Sockets API calls may be executed by each Internet API call.
Applications need not be aware of this.

· Free applications from needing to embed knowledge of Internet protocols.   While the concepts 
supported by the Internet protocols like FTP and HTTP are simple, the actual implementations 
of these protocols can be complex.  For example, FTP servers return ASCII text file directory 
listings; parsing these listings requires specific knowledge of the format returned by each type of
FTP server.  By encapsulating this functionality underneath the Internet APIs, directory parsing 
is solved once for all applications which use the FTP protocol, thereby providing consistent 
behavior across applications.

· Provide applications a constant API set in the face of rapidly changing and evolving protocols.  
The Internet can move incredibly fast, and keeping up with the changes in protocols can make 
writing an application a difficult and frustrating experience.  By defining an API set which 
remains constant, application writers need not change their application every time the underlying
protocol changes; only wininet.dll needs to change.  In addition, advanced protocol features like 
firewall-friendly FTP and Gopher+ can be implemented without having to change applications.

· Follow Win32 API standards.  The Internet Extensions for Win32 look much like the traditional 
Win32 APIs in terms of how they treat buffer management, error returns, and the like.  
Application programmers familiar with the Win32 API set will find the Internet Extensions for 
Win32 return information in a manner which is natural to the Win32 programmer, and using the 
returned information in other Win32 APIs is simple.

5



Internet Extensions for Win32 Preliminary Draft: Subject to Change

· Provide both ANSI and Unicode versions of APIs.  Although the underlying Internet protocols 
invariably use Latin 11 character sets, the Internet Extensions for Win32 provide both ANSI and 
Unicode entry points to facilitate Unicode-only applications.

· Provide full access to Internet protocols.  The Internet Extensions for Win32 focus on providing 
easy access to the common functionality of the supported Internet protocols.  However, in some 
instances applications will need to access extended features of some protocols.  The Internet 
Extensions for Win32 make every effort to provide such access.

· Enable high-performance, multithreaded Internet applications.  The Internet Extensions for 
Win32 are designed to be fully reentrant and multithread safe.  Multithreaded applications can make 
simultaneous calls into the APIs from different threads without adverse effects.  The Internet APIs 
themselves do any necessary synchronization.

1.2Non-Goals

The Internet Extensions for Win32 do not attempt to solve every possible Internet interfacing issue:

· Access for Internet servers.  The Internet Extensions for Win32 are focused on making Internet 
client applications easier; making it easier to write Internet servers is not a goal because servers, 
in order to achieve the type high performance necessary in industrial-strength servers, need to be
able to control how the protocol is accessed and how I/O is performed.

· Mail, News APIs.  The Microsoft solution for mail and news APIs is MAPI.  The Internet 
Extensions for Win32 make no effort to solve the general issue of access to mail and news servers.

1 Latin 1 and ANSI are very similiar, but differ in a few character mappings.  The ANSI versions of the 
Internet Extensions for Win32 do not attempt to perform any mapping between ANSI and Latin 1; they 
simply return exactly what they receive from the server and pass to the server exactly what they receive 
from the application.

6



Internet Extensions for Win32 Preliminary Draft: Subject to Change

2API Overview
The table below summarizes the APIs included in the Internet Extensions for Win32 in the first version.  
The indentation of each API shows dependencies between the APIs: indented APIs may only be called 
after the unindented APIs that precede them.  Typically, this is because the less indented API returns a 
handle and sets up some state at the protocol level, all of which is required to execute successfully the 
later API.

InternetOpen Initializes the application’s use of the Internet Extensions for Win32.

InternetOpenUrl* Begins retrieving an FTP, Gopher, or HTTP URL.
InternetReadFile Reads URL data.

InternetCloseHandle Stops reading data from the URL.

InternetSetStatusCallback* Sets a function which is called with status information.
InternetQueryOption* Queries the setting of an Internet option.
InternetSetOption* Sets an Internet option.

MIME
MimeCreateAssociation Associates a MIME type string with an executable
MimeDeleteAssociation Removes a MIME association
MimeGetAssociation Returns information about MIME associations on the machine

FTP
InternetConnect Opens an FTP session with a server.  Logs on the user.

FtpFindFirstFile Starts file enumeration in the current directory.
InternetFindNextFile Continues file enumeration.

InternetCloseHandle Ends directory file enumeration.

FtpGetFile Retrieves an entire file from the server.
FtpPutFile Writes an entire file to the server.
FtpDeleteFile Deletes a file on the server.
FtpRenameFile Renames a file on the server.

FtpOpenFile Initiates access to a file on the server for either reading or writing.
InternetReadFile Reads data from an open file.
InternetWriteFile Writes data to an open file.

InternetCloseHandle Ends reading/writing to/from a file on the server.

FtpCreateDirectory Creates a new directory on the server.
FtpRemoveDirectory Deletes a directory on the server.
FtpSetCurrentDirectory Changes the client’s current directory on the server.
FtpGetCurrentDirectory Returns the client’s current directory on the server.

FtpCommand Issues an arbitrary command to the FTP server.
InternetGetLastResponseInfo Retrieves the text of the server’s response to the FTP command.

InternetCloseHandle Closes the FTP session.
Gopher

InternetConnect Indicates a Gopher server the application is interested in accessing

7



Internet Extensions for Win32 Preliminary Draft: Subject to Change

GopherFindFirstFile Starts enumerating a Gopher directory listing
InternetFindNextFile Continues Gopher directory enumeration

InternetCloseHandle Terminates Gopher directory enumeration

GopherOpenFile Starts retrieval of a Gopher object
InternetReadFile Reads data from a Gopher object

InternetCloseHandle Completes the reading of a Gopher object

GopherCreateLocator Forms a Gopher locator for use in other Gopher function calls
GopherGetAttribute Retrieves attribute information on the Gopher object

InternetCloseHandle Indicates that the application is no longer interested in the server
HTTP (World Wide Web)

InternetConnect Indicates an HTTP server the application is interested in accessing

HttpOpenRequest Opens an HTTP request handle

HttpAddRequestHeaders Adds HTTP request headers to the HTTP request handle
HttpSendRequest Sends the specified request to the HTTP server

InternetReadFile Reads a block of data from an outstanding HTTP request
HttpQueryInfo Queries information about an HTTP request

InternetCloseHandle Closes an open HTTP request handle

InternetCloseHandle Indicates that the application is no longer interested in the server
Archie

ArchieFindFirstFile* Starts an Archie query
InternetFindNextFile Continues an Archie query
InternetCloseHandle Ends the Archie query

InternetCloseHandle Completes the application’s use of the Internet Extensions for Win32

* Unimplemented functions: Not all of the functions described in this specification are implemented in 
the March 1995 “Alpha” release of the Internet Extensions for Win32.  The functions which are not 
implemented are indicated by an asterisk following the name of the function wherever the name appears 
in this specification.  These unimplemented functions are included in this specification to provide the 
reader with an indication of functions which may be implemented in the future.

2.1Handles

The handles returned by the Internet Extensions for Win32 are not native system handles; that is, Win32 
routines like ReadFile and CloseHandle will not work on Internet handles.  The Internet handles may 
only be used for the corresponding Internet APIs for which they are intended.

Any of the handles returned from the Internet APIs is closed with the InternetCloseHandle function.  If 
a handle is closed while there is still outstanding activity on the handle, the activity is aborted.  Failing to
close valid handles returned from the Internet APIs may result in resource leaks.

2.2MIME Integration

8



Internet Extensions for Win32 Preliminary Draft: Subject to Change

The HTTP and Gopher protocols return MIME (Multimedia Internet Mail Extensions) information about 
files.  In addition to the functions for handling various Internet protocols, the Internet Extensions for 
Win32 include functions for accessing MIME information in a standard fashion.  The existence of these 
MIME functions free applications from having to embed knowledge of the registry or .INI files which 
contain the mappings between file extensions and the associated viewer executables.  This is convenient 
for users with multiple Internet applications from different vendors.

In addition, the MIME functions allow for mappings of MIME type information (for example, 
“application/winword”) to both file extensions (for example, “.DOC”) and viewer executables 
(“winword.exe”).  This allows Internet applications which download data files to launch the standard 
viewer application associated with any downloaded file based on the MIME content type string returned 
with the file.

2.3Error Handling

The Internet Extensions for Win32 return error information in the same fashion as all Win32 APIs.  
Function return values indicate whether a function is successful or not, either by returning a BOOL 
where TRUE is success and FALSE indicates failure, or by returning a handle of type HINTERNET 
which is NULL in the case of failure and any other value for a successful call.

If a function fails, the application may call the Win32 GetLastError function to retrieve a specific error 
code for the failure.  In addition, the FTP and Gopher protocols allow for servers to return additional 
textual error information.  For these protocols, applications may use the InternetGetLastResponseInfo 
function to retrieve error text.

Both GetLastError and InternetGetLastResponseInfo operate on a per-thread basis.  In other words, if 
two threads make Internet function calls at about the same time, any error information will be returned 
for each of the individual threads so that there is no conflict between the threads.  This also means that 
only the thread which made a function call may retrieve the error information for the function.

2.4Multi-threaded Access

All the Internet Extensions for Win32 are “reentrant” in the sense that there may be multiple calls to an 
individual function from different threads.  All the functions do any necessary synchronization.  
However, multiple simultaneous calls using the same Internet connection may lead to unpredictable 
results.

For example, if an application has used FtpOpenFile to begin downloading a file from an FTP server and
two threads simultaneously make calls to InternetReadFile, there is no guarantee as to which thread’s 
call will complete first or the order of the data returned to each thread.  Applications which use multiple 
threads for the same Internet connection are responsible for any necessary synchronization between 
threads to ensure predictable return of information.

2.5Canceling Requests

All of the Internet Extensions for Win32 are synchronous.  In some instances, an application may want to
cancel an outstanding request because of user action.  To cancel a request, use the InternetCloseHandle 
function to close the handle on which the request is outstanding.  Canceling a request in this fashion will 
typically abort the connection to the server, requiring the application to reestablish the connection if it 
wants to communicate further with the server.

2.6Unicode Support

9



Internet Extensions for Win32 Preliminary Draft: Subject to Change

All the Internet Extensions for Win32 that take string arguments on input or output have both ANSI and 
Unicode versions.  As with all Win32 APIs, the ANSI functions have “A” as the final character of their 
name and the Unicode functions have “W”.  On both Windows NT and Windows 95, both the ANSI and 
Unicode versions of the functions are implemented..

Because the underlying Internet protocols pass all information in Latin 1 (very similiar to ANSI), the 
Unicode versions of the Win32 Internet functions must do translations to and from ANSI.  Because in 
some cases it is not possible to convert a Unicode string to ANSI, the Unicode functions may fail.  
However, this will not typically be a problem because the cases where the translation fails are where 
there is no ANSI equivalent, so the requested object could not exist.

None of the Win32 Internet functions translate sent or received content.  For example, when calling a 
Unicode function to retrieve an file from an FTP server, the application must specify the file name in 
Unicode, but the file data is returned to the application exactly as the FTP server has it stored.

10



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3General Internet APIs

3.1InternetOpen

The InternetOpen function initializes an application’s use of the Win32 Internet APIs.

HINTERNET InternetOpen(
 LPCTSTR lpszCallerName,
 DWORD dwAccessType,
 LPVOID lpszGatewayName
);

Parameters

lpszCallerName

A string that identifies the name of the application or entity that is calling the Internet APIs, for 
example “Microsoft Internet Browser.”  This name is used as the user agent in the HTTP protocol.

dwAccessType

type of access required.  Valid parameters are:

PRE_CONFIG_INTERNET_ACCESS - pre-configured (registry)

LOCAL_INTERNET_ACCESS (direct-to-Internet)

GATEWAY_INTERNET_ACCESS (via gateway)

lpGatewayName

Name of preferred gateway if GATEWAY_INTERNET_ACCESS is requested.

Return Value

InternetOpen returns a valid handle that the application passes to subsequent Internet Extensions for 
Win32.  If InternetOpen fails, it returns NULL and the application may retrieve a specific error code 
with the GetLastError function.

Remarks

InternetOpen is the first Win32 Internet function called by an application.  It tells the Internet DLL to 
initialize internal data structures and prepare for future calls from the application.  When the application 
is done using the Internet APIs, it should call InternetCloseHandle to free the HINTERNET and any 
other resources.

See Also

InternetCloseHandle

11



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.2InternetCloseHandle

The InternetCloseHandle function is used to close any Internet handle opened by an application.

BOOL InternetCloseHandle(
 HINTERNET hInet
);

Parameters

hInet

A valid Internet handle to be closed.

Return Value

TRUE if the handle was closed successfully, or FALSE if there was an error, in which case the 
application may call GetLastError to retrieve a specific error code.

Remarks

InternetCloseHandle is used to close all Internet handles (type HINTERNET) and free any resources 
associated with the handle.  If there are any pending operations on the handle they are aborted and any 
outstanding data is discarded.  If a thread is blocking in a call to the Internet DLL, another thread in the 
application may call InternetCloseHandle on the Internet handle in use by the first thread to cancel the 
operation unblock the first thread.

When an application has finished using the Internet DLL, it should close the HINTERNET returned 
from InternetOpen by calling this function.

See Also

InternetOpen, InternetConnect, FtpFindFirstFile, FtpOpenFile, GopherFindFirstFile, 
HttpOpenRequest

12



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.3InternetConnect

The InternetConnect function opens an FTP, Gopher, or HTTP session for the specified site.

HINTERNET InternetConnect( 
 HINTERNET hInternetSession, 
 LPCTSTR lpszServerName, 
 INTERNET_PORT nServerPort,
 LPCTSTR lpszUsername, 
 LPCTSTR lpszPassword, 
 DWORD dwService,
 DWORD dwFlags,
 DWORD dwContext
);

Parameters

hInternetSession

Handle to the current Internet session returned by InternetOpen.

lpszServerName

Points to a null-terminated string that specifies the host name of an Internet server.  Alternately, the 
string may contain the IP number of the site in ASCII dotted-decimal format (e.g. “11.0.1.45”).

nServerPort

The TCP/IP port on the server to connect to.  If nServerPort is INVALID_PORT_NUMBER (0), 
then the default port for the specified service is used.

lpszUsername 

Points to a null-terminated string that specifies the name of the user to log in.  If NULL, an 
appropriate default is used.  For the FTP protocol, the default is “anonymous”.

lpszPassword

Points to a null-terminated string that specifies the password to use during login.  If both 
lpszPassword and lpszUsername are NULL, the default anonymous password is used.  In the case of 
FTP, the default anonymous password is the user’s email name.  If lpszPassword is NULL (or the 
empty string) but lpszUsername is not NULL, a blank password is used.  The following table 
describes the behavior for the four possible settings of lpszUsername and lpszPassword:

lpszUsername lpszPassword  Username sent to FTP 
server

Password sent to FTP 
server

NULL or “” NULL or “” “anonymous” User’s email name
Non-NULL String NULL or “” lpszUsername “”
NULL Non-NULL String ERROR ERROR
Non-NULL String Non-NULL String lpszUsername lpszPassword

dwService

The type of service to access.  May be one of INTERNET_SERVICE_ARCHIE, 
INTERNET_SERVICE_FTP, INTERNET_SERVICE_GOPHER, or INTERNET_SERVICE_HTTP.

dwFlags 

13



Internet Extensions for Win32 Preliminary Draft: Subject to Change

Specifies flags specific to the service used.  

Possible values:

dwService dwFlags supported
INTERNET_SERVICE_FTP INTERNET_CONNECT_FLAG_PASSIVE Use passive mode in all data connections 

for this FTP session
dwContext 

An application-defined value that is used to identify the application context for the returned handle 
in callbacks.  

Return Value

If the connection is successfully, a valid handle to the FTP, Gopher, or HTTP session is returned.  If the 
connection attempt fails, NULL is returned and the application may call GetLastError to retrieve a 
specific error code.  Applications may use InternetGetLastResponseInfo to determine why access to the
service was denied.

Remarks

The InternetConnect function is required before communicating with any Internet service.  For some 
protocols InternetConnect actually establishes a connection with the server, while for others such as 
Gopher the actual connection is not established until the application requests a specific transaction.  The 
motivation for having a connect function for all protocols, even those which do not use persistent 
connections, is that it allows the application to communicate common information about several requests 
with a single function call and allows for future versions of Internet protocols which do not require the 
high cost of connection establishment for every request the client performs.

For maximum efficiency, applications using the Gopher and HTTP protocols should try to minimize calls
to InternetConnect and not call it for every transaction requested by the user.  One mechanism for doing
this is to keep a small cache of handles returned from InternetConnect so that when the user makes a 
request to a previously accessed server, the session handle is still available.

Applications interested in displaying any multi-line text information sent by an FTP server may use 
InternetGetLastResponseInfo to retrieve it.

For FTP connections, if lpszUsername is NULL, InternetConnect will send the string “anonymous” as 
the username.  If lpszPassword is NULL, InternetConnect attempts to use the user’s email name as the 
password..

To close the handle returned from InternetConnect, the application should call InternetCloseHandle.  
InternetCloseHandle will disconnect the client from the server and free all resources associated with the
connection.

See Also

InternetCloseHandle

14



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.4InternetOpenUrl*

The InternetOpenUrl* function begins reading an FTP, Gopher, or HTTP URL (Universal Resource 
Locator).

HINTERNET InternetOpenUrl(
 HINTERNET hInternetSession, 
 LPCTSTR lpszUrl, 
 LPCTSTR lpszHeaders, 
 DWORD dwHeadersLength, 
 DWORD dwFlags,
 DWORD dwContext
);

Parameters

hInternetSession

Handle to the current Internet session returned by InternetOpen.

lpszUrl

The name of the URL to begin reading.  Only URLs beginning with “ftp:”, “gopher:”, or “http:” are
supported.

lpszHeaders

Pointer  to  a  string  containing  the  headers  to  be  sent  to  the  http  server.   See  the  lpszAdditional
parameter to HttpSendRequest for more details.

dwHeadersLength

The length (in characters) of the additional headers. If this is -1L and lpszHeaders is non-NULL, then
lpszHeaders is assumed to be zero terminated (ASCIIZ) and the length is calculated.

dwFlags

Flags describing how to handle this session.  Valid flags are:

dwContext

Application defined value that is passed with the returned handle in any callbacks.

Return Value

If the connection is successfully established, a valid handle to the FTP, Gopher, or HTTP URL is 
returned.  If the open attempt fails, NULL is returned and the application may call GetLastError to 
retrieve a specific error code.  Applications may use InternetGetLastResponseInfo to determine why 
access to the service was denied.

Remarks

InternetOpenUrl* is a general function useful for retrieving data over any of the protocols supported by 
the Internet Extensions for Win32.  It is useful when the calling application does not care about accessing
the particulars of a protocol but simply wants to retrieve the data corresponding to a URL.  
InternetOpenUrl* parses the URL string, establishes a connection to the server, and gets ready to 

15



Internet Extensions for Win32 Preliminary Draft: Subject to Change

download the data identified by the URL.  The application should use InternetReadFile to retrieve the 
URL data.

Applications need not call InternetConnect prior to InternetOpenUrl*.

Use InternetCloseHandle to close the handle returned from InternetOpenUrl*.  Closing the handle 
before all the URL data has been read results in aborting the connection.

See Also

HttpSendRequest, InternetOpen, InternetReadFile, InternetCloseHandle

16



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.5InternetReadFile

The InternetReadFile function reads data from a handle opened by the FtpOpenFile, GopherOpenFile,
or HttpOpenRequest functions.

BOOL InternetReadFile( 
 HINTERNET hFile,
 LPVOID lpBuffer,
 DWORD dwNumberOfBytesToRead, 
 LPDWORD lpdwNumberOfBytesRead 
);

Parameters

hFile

A valid handle returned from a previous call to InternetOpenUrl*, FtpOpenFile, 
GopherOpenFile, or HttpOpenRequest..

lpBuffer

Points to the buffer that receives the data read.

dwNumberOfBytesToRead

Specifies the number of bytes to read.

lpNumberOfBytesRead

Points to the number of bytes read by this call.  InternetReadFile sets this value to zero before doing
any work or error checking

Return Value

If the function succeeds, the return value is TRUE; otherwise, it is FALSE. To get extended error 
information, use the GetLastError function, and the InternetGetLastResponseInfo function when 
appropriate.

Remarks

If the return value is TRUE and the number of bytes read is zero, then the transfer has completed and 
there are no more bytes to be read on the handle.  This is analogous to reaching EOF in a local file.  The 
application should then call InternetCloseHandle.

The buffer pointed to by lpBuffer is not always filled by calls to InternetReadFile, as sufficient data may
not have arrived from the server to do so.  Unless the transfer has completed, however, at least one byte 
will always be placed in the buffer.

See Also

InternetOpenUrl*, FtpOpenFile, GopherOpenFile, HttpOpenRequest, InternetCloseHandle

17



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.6InternetWriteFile

The InternetWriteFile function writes data to an open Internet file.

BOOL InternetWriteFile( 
 HINTERNET hFile,
 LPVOID lpBuffer,
 DWORD dwNumberOfBytesToWrite, 
 LPDWORD lpNumberOfBytesWritten 
);

Parameters

hFile

A valid handle returned from a previous call to FtpOpenFile..

lpBuffer

Points to the buffer containing the data to be written to the file.

dwNumberOfBytesToWrite

Specifies the number of bytes to write to the file.

lpNumberOfBytesWritten

Points to the number of bytes written by this call.  InternetWriteFile sets this value to zero before 
doing any work or error checking.

Return Value

If the function succeeds, the return value is TRUE; otherwise, it is FALSE. To get extended error 
information, use the GetLastError function, and the InternetGetLastResponseInfo function when 
appropriate.

Remarks

When the application is done sending data, it must call the InternetCloseHandle function to end the data
transfer. 

See Also

FtpOpenFile, InternetCloseHandle

18



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.7InternetFindNextFile

InternetFindNextFile continues a file search from a previous call to FtpFindFirstFile, 
GopherFindFirstFile, or ArchieFindFirstFile*.

BOOL InternetFindNextFile( 
 HINTERNET hSearchHandle, 
 LPVOID lpFindFileData,
);

Parameters

hSearchHandle

A valid handle returned from one of the XxxFindFirstFile functions.

lpFindFileData

Points to a buffer that receives information about the found file or directory.  The format of the 
information placed in the buffer depends on the protocol in use.  For example, the FTP protocol 
returns a WIN32_FIND_DATA structure while the Gopher protocol returns a 
GOPHER_FIND_DATA structure.

Return Value

If the function succeeds, the return value is TRUE; otherwise, it is FALSE. To get extended error 
information, use the GetLastError function. If no matching files can be found, the GetLastError 
function returns ERROR_NO_MORE_FILES.

See Also

FtpFindFirstFile, GopherFindFirstFile, ArchieFindFirstFile*

19



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.8InternetQueryOption*

The InternetQueryOption* function queries an Internet option on the specified handle.

BOOL
InternetQueryOption(
 HINTERNET hInternetSession,
 DWORD dwOption,
 LPVOID lpBuffer,
 LPDWORD lpBufferLength
);

Parameters

hInternetSession

The Internet handle on which to query information.

dwOption

The Internet option to query.  The following options are defined:

Value Meaning
INTERNET_OPTION_CALLBACK Returns the address of the callback function 

defined for this handle
INTERNET_OPTION_CONNECT_TIMEOUT A timeout value in milliseconds to use for 

Internet  connection requests.  If any connection 
request takes longer than this timeout then the 
request is canceled.  The default timeout is 
infinite.

INTERNET_OPTION_CONNECT_RETRIES A retry count to use for Internet  connection 
requests.  If any connection attempt still fails 
after this many tries then the request is canceled. 
The default is 5 retries.

INTERNET_OPTION_CONNECT_BACKOFF A delay value in milliseconds to wait between 
connection retries.

INTERNET_OPTION_CONTROL_SEND_TIMEOUT A timeout value in milliseconds to use for non-
data (control) Internet send requests.  If any non-
data send request takes longer than this timeout 
then the request is canceled.  The default timeout
is infinite.  Currently this value only has 
meaning for ftp sessions.

INTERNET_OPTION_CONTROL_RECEIVE_TIMEOUT A timeout value in milliseconds to use for non-
data (control) Internet receive requests.  If any 
non-data receive request takes longer than this 
timeout then the request is canceled.  The default
timeout is infinite. Currently this value only has 
meaning for ftp sessions.

INTERNET_OPTION_DATA_SEND_TIMEOUT A timeout value in milliseconds to use for data 
Internet send requests.  If any data send request 
takes longer than this timeout then the request is 
canceled.  The default timeout is infinite.

INTERNET_OPTION_DATA_RECEIVE_TIMEOUT A timeout value in milliseconds to use for data 
Internet  receive requests.  If any data receive 
request takes longer than this timeout then the 
request is canceled.  The default timeout is 

20



Internet Extensions for Win32 Preliminary Draft: Subject to Change

infinite.
INTERNET_OPTION_HANDLE_TYPE Returns the type of the Internet handle passed in.

Possible return values include:
INTERNET_HANDLE_TYPE_INTERNET
INTERNET_HANDLE_TYPE_CONNECT_ARCHIE
INTERNET_HANDLE_TYPE_CONNECT_FTP
INTERNET_HANDLE_TYPE_CONNECT_GOPHER
INTERNET_HANDLE_TYPE_CONNECT_HTTP
INTERNET_HANDLE_TYPE_ARCHIE_FIND
INTERNET_HANDLE_TYPE_FTP_FIND
INTERNET_HANDLE_TYPE_FTP_FIND_HTML
INTERNET_HANDLE_TYPE_FTP_FILE
INTERNET_HANDLE_TYPE_FTP_FILE_HTML
INTERNET_HANDLE_TYPE_GOPHER_FIND
INTERNET_HANDLE_TYPE_GOPHER_FIND_HTML
INTERNET_HANDLE_TYPE_GOPHER_FILE
INTERNET_HANDLE_TYPE_GOPHER_FILE_HTML
INTERNET_HANDLE_TYPE_HTTP_REQUEST

INTERNET_OPTION_CONTEXT_VALUE Returns the context value associated with this 
Internet handle.

lpBuffer

A buffer which receives the option setting.

lpBufferLength

A pointer to a DWORD containing the length of lpBuffer.  On return this contains the length of the
data placed into lpBuffer.

Return Value

TRUE if the operation was successful, or FALSE if there was an error, in which case the application may
call GetLastError to retrieve a specific error code.

Remarks

See Also

21



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.9InternetSetOption*

The InternetSetOption* function sets an Internet option on the specified handle.

BOOL
InternetSetOption(
 HINTERNET hInternetSession,
 DWORD dwOption,
 LPVOID lpBuffer,
 DWORD dwBufferLength
);

Parameters

hInternetSession

The Internet handle on which to set information.

dwOption

The Internet option to set.  See InternetQueryOption for a list of possible options.

lpBuffer

A buffer which contains the option setting.

dwBufferLength

The length of lpBuffer.

Return Value

TRUE if the operation was successful, or FALSE if there was an error, in which case the application may
call GetLastError to retrieve a specific error code.

Remarks

See Also

22



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.10InternetGetLastResponseInfo

The InternetGetLastResponseInfo function retrieves error text from the last Win32 Internet function 
which failed.

BOOL
InternetGetLastResponseInfo(
LPDWORD lpdwError,
 LPTSTR lpszBuffer,
 LPDWORD lpdwBufferLength
);

Parameters

lpdwError

Receives an error code pertaining to the operation that failed.

lpszBuffer

A buffer which receives the error text.

lpdwBufferLength

On input, the size of the buffer pointed to by lpszBuffer.  On output, the size of the string written to
the buffer.

Return Value

TRUE if error text was successfully written to the buffer, or FALSE if there was an error, in which case 
the application may call GetLastError to retrieve a specific error code.  If the buffer is too small to hold 
all the error text, GetLastError returns ERROR_BUFFER_OVERFLOW and lpdwBufferLength contains
the minimum buffer size required to return all the error text.

Remarks

The FTP and Gopher protocols return textual information along with most errors.  Applications interested
in retrieving this extended error information may use the InternetGetLastResponseInfo function 
whenever a GetLastError, following an unsuccessful function call, returns 
ERROR_INTERNET_EXTENDED_ERROR.

The buffer pointed to by lpszBuffer must be large enough to hold both the error string and a zero 
terminator at the end of the string.  However, the value returned in lpdwBufferLength does not include the
terminating zero.

See Also

23



Internet Extensions for Win32 Preliminary Draft: Subject to Change

3.11InternetSetStatusCallback*

The InternetSetStatusCallback* function sets up a callback function that the Win32 Internet functions 
call when progress is made during an operation.

INTERNET_STATUS_CALLBACK InternetSetStatusCallback(
INTERNET_STATUS_CALLBACK lpInetProc
);

Parameters

lpInetProc

Pointer to a callback function to call whenever progress is made.

Return Value

Returns the previously defined status callback function for the thread, NULL if the thread had no 
previously defined status callback, or INVALID_INTERNET_STATUS_CALLBACK if the callback is 
not valid.

Remarks

Many of the Win32 Internet functions perform several operations on the network.  Each of these 
operations can take some time to complete, and each has the possibility for failure.  In some 
circumstances it is convenient for an application to display processing status during a long-term 
operation.  Setting up an Internet status callback function enables this.

InternetSetStatusCallback* operates on a per-thread basis.  This allows different threads within an 
application process to use different callback functions if desired.  However, this also means that 
applications must call InternetSetStatusCallback* for every thread which makes Win32 Internet calls 
for which status information is required.

After calling InternetSetStatusCallback*, the callback is called from within any Win32 Internet 
function performing network operations which may take an extended period of time.  The function is 
defined as follows:

BOOL lpInetProc(
 DWORD dwContext,
 DWORD dwInternetStatus,
 LPVOID lpStatusInformation,
 DWORD dwStatusInformationLength
);

dwInternetStatus indicates the operation the Internet DLL is performing.  The contents of 
lpStatusInformation depends on the value of dwInternetStatus, and dwStatusInformationLength indicates 
the length of the data included in lpStatusInformation.  The following status values for dwInternetStatus 
are defined:

Value Meaning
INTERNET_STATUS_RESOLVING_NAME Looking up the IP address of the name 

contained in lpStatusInformation.
INTERNET_STATUS_NAME_RESOLVED Successfully found the IP address of the name

contained in lpStatusInformation.
INTERNET_STATUS_CONNECTING_TO_SERVER Connecting to the socket address 

24



Internet Extensions for Win32 Preliminary Draft: Subject to Change

(SOCKADDR) pointed to by 
lpStatusInformation.

INTERNET_STATUS_CONNECTED_TO_SERVER Successfully connected to the socket address 
(SOCKADDR) pointed to by 
lpStatusInformation.

INTERNET_STATUS_SENDING_REQUEST Sending the information request to the server.
LpStatusInformation is NULL.

INTERNET_STATUS_ REQUEST_SENT Successfully sent the information request to 
the server. lpStatusInformation is NULL.

INTERNET_STATUS_RECEIVING_RESPONSE Waiting for the server to respond to a request.
LpStatusInformation is NULL.

INTERNET_STATUS_RESPONSE_RECEIVED Successfully received a response from the 
server.  LpStatusInformation is NULL.

INTERNET_STATUS_CLOSING_CONNECTION Closing the connection to the server.  
LpStatusInformation is NULL.

INTERNET_STATUS_CONNECTION_CLOSED Successfully closed the connection to the 
server.  LpStatusInformation is NULL

INTERNET_STATUS_HANDLE_CREATED Used by InternetConnect to indicate that it 
has created the new handle.  This allows the 
application to call InternetCloseHandle 
from another thread if the connect is taking 
too long.

Returning FALSE from the lpInetProc cancels the operation and causes the Win32 Internet function to 
fail.

See Also

InternetCloseHandle, InternetConnect

25



Internet Extensions for Win32 Preliminary Draft: Subject to Change

4Mime APIs

4.1MimeCreateAssociation

The MimeCreateAssociation function creates an association between a MIME content type string and 
the application(s) which support the type.

BOOL MimeCreateAssociation(
 LPCTSTR lpszContentType,
 LPCTSTR lpszExtensions,
 LPCTSTR lpszViewer,
 LPCTSTR lpszViewerFriendlyName,
 LPCTSTR lpszCommandLine,
 DWORD dwOptions
);

Parameters

lpszContentType

The MIME content-type string, for example “application/winword”.

lpszExtensions

The file name extension for the viewer, for example “.doc”.  The caller must include the period in
the extension.

lpszViewer

The name of the executable which may be used to view the file type, for example “winword.exe”.

lpszViewerFriendlyName 

Friendly name for the viewer executable, for example “Word.Document.6”.

lpszCommandLine

The  command  line  which  should  be  used  to  launch  the  viewer  application,  for  example  “C:\
WINWORD\WINWORD.EXE /w”.

dwOptions

Controls the creation operation.  The following flags are possible:

Value Meaning

MIME_OVERWRITE_EXISTING If the association already exists, overwrite it.

MIME_FAIL_IF_EXISTING Fail if the association already exists.  This is the
default behavior.

Return Value

TRUE if the function is successful, FALSE otherwise. Extended error information is available via the 
GetLastError API.

Remarks

26



Internet Extensions for Win32 Preliminary Draft: Subject to Change

MimeCreateAssociation sets up the information required to launch viewers based on the MIME content-
type strings returned in many protocols such as HTTP (World Wide Web) and Gopher.  This function is 
similar to the File-->Associate functionality of the file manager except that it adds the MIME content-
type string.  The information is written to the same spot in the registry  as with the file manager with the 
addition of the MIME-specific information.

If MIME_OVERWRITE_EXISTING is specified, then any existing associations for the MIME content-
type and file name extension are overwritten.  This includes both associations created with 
MimeCreateAssociation and associations created with the file manager.

Viewer applications should call MimeCreateAssociation at setup time so that any Internet browsing 
application can successfully launch them when needed to view retrieved information.

See Also

27



Internet Extensions for Win32 Preliminary Draft: Subject to Change

4.2MimeDeleteAssociation

The MimeDeleteAssociation function removes an association created by MimeCreateAssociation.

BOOL MimeDeleteAssociation(
 LPCTSTR lpszContentType
);

Parameters

lpszContentType

The MIME content-type string as specified to MimeCreateAssociation.  For example, 
“application/winword”.

Return Value

TRUE if the function is successful, FALSE otherwise. Extended error information is available via the 
GetLastError API.

Remarks

This function only removes associations created by MimeCreateAssociation.  Associations created in 
the file manager may not be removed with MimeDeleteAssociation.

MimeDeleteAssociation removes all information about an association from the local system.

See Also

28



Internet Extensions for Win32 Preliminary Draft: Subject to Change

4.3MimeGetAssociation

The MimeGetAssociation function returns information about MIME content-type and file-extension 
associations.

BOOL MimeGetAssociation(
 DWORD dwFilterType,
 LPCTSTR lpszFilter,
 MIME_ENUMERATOR lpEnumerator
);

Parameters

dwFilterType

Determines what the lpszFilter parameter refers to.  May be one of:

Value Meaning

MIME_CONTENT_TYPE The filter is a MIME content-type string such as
“application/winword.”

MIME_EXTENSION The filter is a file name extension like “.doc”.

MIME_VIEWER The  filter  is  a  viewer  executable  name  like
“winword.exe”.

MIME_ALL Read all associations.

lpszFilter

The filter to use in returning MIME associations.

lpEnumerator

Points  to  an  application-defined  callback  function.   For  each  association  that  matches,  the
MIME_ENUMERATOR callback function is called once.

Return Value

TRUE if the function is successful, FALSE otherwise. Extended error information is available via the 
GetLastError API.

Remarks

The MIME_ENUMERATOR callback function is defined as follows:

BOOL CALLBACK EnumMimeAssociationsProc(
LPCTSTR lpszContentType,
 LPCTSTR lpszExtensions,
 LPCTSTR lpszViewer,
 LPCTSTR lpszViewerFriendlyName,
 LPCTSTR lpszCommandLine
);

Since a single viewer may handle several types of file extensions and MIME content-type strings, the 
lpEnumerator function may be called multiple times.  To stop enumeration, the 
EnumMimeAssociationsProc may return FALSE at any time.

29



Internet Extensions for Win32 Preliminary Draft: Subject to Change

See Also

30



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5FTP APIs
5.1FtpFindFirstFile

The FtpFindFirstFile function begins searching the current directory of the given FTP session.  File and 
directory entries are returned to the application in the WIN32_FIND_DATA structure.

HINTERNET FtpFindFirstFile( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszSearchFile, 
 LPWIN32_FIND_DATA lpFindFileData,
 DWORD dwContext 
);

Parameters

hFtpSession

A valid handle to an FTP session returned from InternetConnect.

lpszSearchFile

Points to a null-terminated string that specifies a valid directory path or file name for the FTP 
server’s file system.

lpFindFileData

Points to the WIN32_FIND_DATA structure that receives information about the found file or 
directory.

dwContext

Application-defined value that associates this search with any application data.  This would only be 
used if the calling thread has already set up a Status Callback with InternetSetStatusCallback.

Return Value

A valid handle for the request if the directory enumeration was started  successfully, or NULL if there 
was an error, in which case an application may call GetLastError to get a specific error code.  If no 
matching files can be found, the GetLastError function returns ERROR_NO_MORE_FILES.

Remarks

FtpFindFirstFile is similar to the Win32 function FindFirstFile.  However, an important difference is 
that only one FtpFindFirstFile may occur at a time within a given FTP session, and the enumerations 
are therefore correlated with the FTP session handle instead.  This is because the FTP protocol allows 
only a single directory enumeration on a session. After calling FtpFindFirstFile, and until calling 
InternetCloseHandle, the application may not call FtpFindFirstFile again on a given FTP session 
handle.  In that situation, calls to the FtpFindFirstFile function will fail with error code 
ERROR_FTP_TRANSFER_IN_PROGRESS.

After beginning a directory enumeration with FtpFindFirstFile, use the InternetFindNextFile function 
to continue the enumeration.

Use the InternetCloseHandle function to close the handle returned from FtpFindFirstFile.  
InternetCloseHandle the handle before InternetFindNextFile fails with ERROR_NO_MORE_FILES 
results in the directory enumeration being aborted.

31



Internet Extensions for Win32 Preliminary Draft: Subject to Change

Because the FTP protocol provides no standard means of enumerating some common information 
pertaining to files (such as file creation date, file size, etc.,) may not always be available or correct.  In 
these situations, FtpFindFirstFile and InternetFindNextFile fill unavailable information in with a “best 
guess” based on information that is available.  For example, creation and last access dates will often be 
the same as the file’s modification date.

This function will enumerate both files and directories.

The application may not call FtpFindFirstFile between calls to FtpOpenFile and InternetCloseHandle.

See Also

FtpOpenFile, InternetCloseHandle, InternetFindNextFile, InternetSetStatusCallback

32



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.2 FtpGetFile

The FtpGetFile function retrieves a file from the FTP server, and stores it under the specified file name, 
creating a new local file in the process.

BOOL FtpGetFile(
 HINTERNET  hFtpSession,
 LPCTSTR lpszRemoteFile,
 LPCTSTR lpszNewFile,
 BOOL fFailIfExists,
 DWORD dwFlagsAndAttributes,
 DWORD dwFlags,
 DWORD dwContext
);

Parameters

hFtpSession

A valid handle to an FTP session

lpszRemoteFile

A pointer to a null-terminated string that contains the name of the file to retrieve from the remote 
system.

lpszNewFile

A pointer to a null-terminated string that contains the name of the file to create on the local system.

fFailIfExists

A Boolean flag that indicates whether the function should proceed if a local file of the specified 
name already exists.  If fFailIfExists is TRUE and the local file exists, FtpGetFile fails.

dwFlagsAndAttributes

Specifies the file attributes and flags for the new file.  May be any combination of 
FILE_ATTRIBUTE_* file attributes.  See CreateFile for further information on 
FILE_ATTRIBUTE_* attributes.

dwFlags

Specifies the conditions under which the transfer occurs.  May be any of the 
FTP_TRANSFER_TYPE_* constants.  For further information on the FTP_TRANSFER_TYPE_* 
constants, see FtpOpenFile.

dwContext

Application-defined value to associate this search with any application data.  This would only be 
used if the calling thread has already set up a Status Callback with InternetSetStatusCallback.

Return Value

TRUE if the file was retrieved successfully, or FALSE if there was an error, in which case an application 
may call GetLastError to get a specific error code.

Remarks

33



Internet Extensions for Win32 Preliminary Draft: Subject to Change

FtpGetFile is a high-level routine that handles all the bookkeeping and overhead associated with reading 
a file from an FTP server and storing it locally.  Applications which want to retrieve file data only or 
which want to have careful control over the file transfer should use the FtpOpenFile and 
InternetReadFile functions.

If the dwTransferType specifies FILE_TRANSFER_TYPE_ASCII, translation of the file data will 
convert control and formatting characters to local equivalents.  The default transfer is binary mode, 
where the file is downloaded in the exactly same format as it is stored on the server.

Both lpszRemoteFile and lpszNewFile may be either partially qualified file names relative to the current 
directory or fully qualified.  Either a backslash (“\”) or forward slash (“/”) may be used as the directory 
separator for either name; FtpGetFile translates the directory name separators to the appropriate 
character before using it.

See Also

34



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.3FtpPutFile

The FtpPutFile function stores a file on the FTP server.

BOOL FtpPutFile( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszLocalFile, 
 LPCTSTR lpszNewRemoteFile, 
 DWORD dwTransferType 
);

Parameters

hFtpSession

A valid handle to an FTP session.

lpscLocalFile

A pointer to a null-terminated string that contains the name of the file to send from the local system.

lpszNewRemoteFile

A pointer to a null-terminated string that contains the name of the file to create on the remote 
system.

dwTransferType

Specifies the conditions under which the transfer occurs.  May be any combination of 
FTP_TRANSFER_* defined constants.  For further information on the FTP_TRANSFER_* 
constants, see FtpOpenFile.

Return Value

TRUE if the file was stored successfully, or FALSE if there was an error, in which case an application 
may call GetLastError to get a specific error code.

Remarks

FtpPutFile is a high-level routine that handles all the bookkeeping and overhead associated with reading 
a file from an FTP server and storing it locally.  Applications which want to send file data only or which 
want to have careful control over the file transfer should use the FtpOpenFile and InternetWriteFile 
functions.

If the dwTransferType specifies FILE_TRANSFER_TYPE_ASCII, translation of the file data will 
convert control and formatting characters to local equivalents.

Both lpszNewRemoteFile and lpszLocalFile may be either partially qualified file names relative to the 
current directory or fully qualified.  Either a backslash (“\”) or forward slash (“/”) may be used as the 
directory separator for either name; FtpPutFile translates the directory name separators to the 
appropriate character before using it.

See Also

35



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.4FtpDeleteFile

The FtpDeleteFile function deletes a file stored on the FTP server.

BOOL FtpDeleteFile( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszFile 
);

Parameters

hFtpSession

A valid handle to an FTP session.

lpszFile

A pointer to a null-terminated string that contains the name of the file to delete on the remote 
system.

Return Value

TRUE if the file was deleted successfully, or FALSE if there was an error, in which case an application 
may call GetLastError to get a specific error code.

Remarks

lpszFile may be either partially qualified file names relative to the current directory or fully qualified.  
Either a backslash (“\”) or forward slash (“/”) may be used as the directory separator for either name; 
FtpDeleteFile translates the directory name separators to the appropriate character before using it.

See Also

36



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.5FtpRenameFile

FtpRenameFile renames a file stored on the FTP server.

BOOL FtpRenameFile( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszExisting, 
 LPCTSTR lpszNew
);

Parameters

hFtpSession

A valid handle to an FTP session.

lpszExisting

A pointer to a null-terminated string that contains the name of the file which will have its name on 
the remote FTP server changed.

lpszNew

A pointer to a null-terminated string that contains the new name for the remote file.

Return Value

TRUE if the file was renamed successfully, or FALSE if there was an error, in which case an application 
may call GetLastError to get a specific error code.

Remarks

lpszExisting and lpszNew may be either partially qualified file names relative to the current directory or 
fully qualified.  Either a backslash (“\”) or forward slash (“/”) may be used as the directory separator for 
either name; FtpRenameFile translates the directory name separators to the appropriate character before 
using it.

See Also

37



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.6FtpOpenFile

The FtpOpenFile function initiates access to a remote file for either writing or reading.

HINTERNET FtpOpenFile( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszFileName, 
 DWORD fdwAccess, 
 DWORD dwTransferType 
);

Parameters

hFtpSession

A valid handle to an FTP session

lpszFileName

A pointer to a null-terminated string that contains the name of the file to access on the remote 
system.

fdwAccess

Determines how the file will be accessed: either GENERIC_READ or GENERIC_WRITE, but not 
both

dwTransferType

Specifies the conditions under which subsequent transfers occur.  May be any of the 
FTP_TRANSFER_* constants:

Value Meaning

FTP_TRANSFER_TYPE_ASCII The file will be transferred using FTP’s ASCII 
(Type “A”) transfer method.  Control and 
formatting information will be converted to 
local equivalents.

FTP_TRANSFER_TYPE_BINARY The file will be transferred using FTP’s Image 
(Type “I”) transfer method.  The file is 
transferred exactly as it exists with no changes.  
This is the default transfer method.

Return Value

A valid handle for the request if the file was opened successfully, or NULL if there was an error, in 
which case an application may call GetLastError to get a specific error code.

Remarks

The FtpOpenFile function should be used in these cases:

· An application has data which it wants to send to an FTP server to be created as a file on the FTP 
server.  The application does not have a local file containing the data.  After InternetOpen the file with 
FtpOpenFile, the application will use InternetWriteFile to send the FTP file data to the server.

38



Internet Extensions for Win32 Preliminary Draft: Subject to Change

· An application wants to retrieve a file from the server into application-controlled memory rather than 
writing the file to disk.  The application uses InternetReadFile after InternetOpen the file.

· An application wants a fine level of control over a file transfer.  For example, the application may want 
to display a “thermometer” when downloading a file to give the user an indication that the file transfer is 
proceeding correctly (or not).

After calling the FtpOpenFile function, and until calling InternetCloseHandle, the application may 
only call InternetReadFile or InternetWriteFile, InternetCloseHandle, the FtpFindFirstFile function.
Calls to other FTP functions on the same FTP session will fail and set the error code to 
FTP_ETRANSFER_IN_PROGRESS.  

Only one file may be open in a single FTP session.  Therefore, no file handle is returned, and the 
application merely uses the FTP session handle when appropriate.

lpszFile may be either partially qualified file names relative to the current directory or fully qualified.  
Either a backslash (“\”) or forward slash (“/”) may be used as the directory separator for either name; 
FtpOpenFile translates the directory name separators to the appropriate character before using it.

Use the InternetCloseHandle function to handle returned from FtpOpenFile.  InternetCloseHandle the 
handle before all the data has been transferred results in the transfer being aborted.

See Also

39



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.7FtpCreateDirectory

The FtpCreateDirectory function creates a new directory on the FTP server.

BOOL FtpCreateDirectory( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszDirectory 
);

Parameters

hFtpSession

A valid handle to an FTP session.

lpszDirectory

A pointer to a null-terminated string that contains the name of the directory to create on the remote 
system.  This may be either a fully qualified path name or a name relative to the current directory.

Return Value

If the function succeeds, FtpCreateDirectory returns TRUE.  Otherwise, an error occurred and the 
application may use GetLastError to retrieve a specific error code.  If the error code indicates that the 
FTP server denied the request to create a directory, InternetGetLastResponseInfo may be useful in 
determining why.

Remarks

Applications should use FtpGetCurrentDirectory to determine the remote site’s current working 
directory, rather than assuming that the remote system uses a hierarchical naming scheme for directories.

lpszDirectory may be either partially qualified file names relative to the current directory or fully 
qualified.  Either a backslash (“\”) or forward slash (“/”) may be used as the directory separator for either 
name; FtpCreateDirectory translates the directory name separators to the appropriate character before 
using it.

See Also

40



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.8FtpRemoveDirectory

The FtpRemoveDirectory function removes the specified directory on the FTP server.

BOOL FtpRemoveDirectory( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszDirectory
);

Parameters

hFtpSession

A valid handle to an FTP session.

lpszDirectory

A pointer to a null-terminated string that contains the name of the directory to remove on the remote 
system. This may be either a fully qualified path name or a name relative to the current directory.

Return Value

If the function succeeds, the return value is TRUE. Otherwise, an error occurred and the application may 
use GetLastError to retrieve a specific error code.  If the error code indicates that the FTP server denied
the request to remove a directory, InternetGetLastResponseInfo may be useful in determining why.

Remarks

Applications should use FtpGetCurrentDirectory to determine the remote site’s current working 
directory, rather than assuming that the remote system uses a hierarchical naming scheme for directories.

lpszDirectory may be either partially qualified file names relative to the current directory or fully 
qualified.  Either a backslash (“\”) or forward slash (“/”) may be used as the directory separator for either 
name; FtpRemoveDirectory translates the directory name separators to the appropriate character before 
using it.

See Also

41



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.9FtpSetCurrentDirectory

The FtpSetCurrentDirectory function changes to a different working directory on the FTP server.

BOOL FtpSetCurrentDirectory( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszDirectory
);

Parameters

hFtpSession

A valid handle to an FTP session.

lpszDirectory

A pointer to a null-terminated string that contains the name of the directory to change to on the 
remote system. This may be either a fully qualified path name or a name relative to the current 
directory.

Return Value

If the function succeeds, the return value is TRUE. Otherwise, an error occurred and the application may 
use GetLastError to retrieve a specific error code.  If the error code indicates that the FTP server denied
the request to change to a directory, InternetGetLastResponseInfo may be useful in determining why.

Remarks

Applications should use FtpGetCurrentDirectory to determine the remote site’s current working 
directory, rather than assuming that the remote system uses a hierarchical naming scheme for directories.

lpszDirectory may be either partially qualified file names relative to the current directory or fully 
qualified.  Either a backslash (“\”) or forward slash (“/”) may be used as the directory separator for either 
name; FtpSetCurrentDirectory translates the directory name separators to the appropriate character 
before using it.

See Also

42



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.10FtpGetCurrentDirectory

The FtpGetCurrentDirectory function retrieves the current directory for the specified FTP session.

BOOL FtpGetCurrentDirectory( 
 HINTERNET hFtpSession, 
 LPCTSTR lpszCurrentDirectory,
 LPDWORD lpdwCurrentDirectoty

);

Parameters

hFtpSession

A valid handle to an FTP session.

lpszCurrentDirectory

Points to the buffer for the current directory string. This null-terminated string specifies the absolute 
path to the current directory.

lpdwCurrentDirectory

Specifies the length, in characters, of the buffer for the current directory string. The buffer length 
must include room for a terminating null character.  Using a length of MAX_PATH will be sufficient
for all pathnames.

Return Value

If the function succeeds, the return value is TRUE. Otherwise, an error occurred and the application may 
use GetLastError to retrieve a specific error code.  If the error code indicates that the FTP server denied
the request to change to a directory, InternetGetLastResponseInfo may be useful in determining why.

Remarks

If the lpszCurrentDirectory buffer is not large enough, then on return lpdwCurrentDirectory contains the 
number of bytes requires to retrieve the full current directory name.

See Also 

43



Internet Extensions for Win32 Preliminary Draft: Subject to Change

5.11FtpCommand

The FtpCommand function issues an arbitrary command on the FTP server referred to by the session 
handle.

BOOL FtpCommand( 
 HINTERNET hFtpSession, 
 BOOL fExpectResponse, 
 DWORD dwTransferType,
 LPCTSTR lpszCommand
);

Parameters

hFtpSession

A valid handle to an FTP session.

fExpectResponse

A Boolean value indicating whether the command is expected to cause the FTP server to open a data 
connection on which to send a reply.  If TRUE, FtpCommand creates a connection endpoint and 
negotiates for a connection with the FTP server.  The application must use InternetReadFile and 
InternetCloseHandle to read from and close this data connection.

dwTransferType

One of the FTP_TRANSFER_TYPE_* constants.  If fExpectResponse is TRUE, this value governs 
the type of connection constructed with the FTP server.

lpszCommand

A pointer to a null-terminated format string containing the command to send to the FTP server.

Return Value

If the function succeeds, the return value is TRUE. Otherwise, an error occurred and the application may 
use GetLastError to retrieve a specific error code.  If the error code indicates that the FTP server denied
the request to change to a directory, InternetGetLastResponseInfo may be useful in determining why

Remarks

The application must use InternetGetLastResponseInfo to determine the FTP server’s response to the 
command.

The FtpCommand function ensures that the text sent contains only ASCII printable characters and filters
the string appropriately, adding the necessary end-of-line characters.

If fExpectResponse is TRUE, FtpCommand will issue the appropriate “PORT” or “PASV” command 
from the FTP protocol.

See Also

44



Internet Extensions for Win32 Preliminary Draft: Subject to Change

6Gopher APIs
6.1GopherCreateLocator

The GopherCreateLocator function creates a Gopher or Gopher+ locator string from its component 
parts.

BOOL GopherCreateLocator(
 LPCTSTR lpszHost,
 INTERNET_PORT nPort,
 LPCTSTR lpszDisplayString,
 LPCTSTR lpszSelector,
 DWORD dwGopherType, 
 LPCSTR lpszLocator,
 LPDWORD lpdwBufferLength
);

Parameters

lpszHost

String identifying the name of the host, or a dotted-decimal IP address like “198.105.232.1”.

nPort

Port on which the Gopher server at Host lives, in host-byte order. If nPort is 
INVALID_PORT_NUMBER, then the default gopher port is read from the \etc\services file..

lpszDisplayString

The Gopher document or directory to be displayed.  lpszDisplayString may be NULL, in which case 
the default directory for the Gopher server will be returned.

lpszSelector

The selector string to be sent to the gopher server in order to retrieve information. May be NULL.

dwGopherType

Specifying whether lpszSelector refers to a directory or document, and whether the request is 
Gopher+ or Gopher.  See GOPHER_FIND_DATA Attributes.

lpszLocator

Pointer to the buffer where the locator string will be returned.  If lpszLocator is NULL, 
lpdwBufferLength receives the needed buffer length but no other processing occurs.

lpdwBufferLength

On input, the length of lpszLocator.  On output, the number of bytes written to lpszLocator, or, if the 
lpszLocator buffer is too small, the number of bytes required to form the locator successfully.

Return Value

TRUE if success, else FALSE, in which case more information will be available via GetLastError and 
InternetGetLastResponseInfo.

45



Internet Extensions for Win32 Preliminary Draft: Subject to Change

Remarks

In order to retrieve information from a Gopher server, an application must first get a Gopher “locator” 
from the Gopher server.  The locator, which the application should treat as an opaque token, is typically 
used for calls to the GopherFindFirstFile function to retrieve a specific piece of information.

See Also

46



Internet Extensions for Win32 Preliminary Draft: Subject to Change

6.2GopherGetLocatorType

The GopherGetLocatorType function parses a Gopher locator and determines its attributes.

BOOL GopherGetLocatorType(
 LPCTSTR lpszLocator,
 LPDWORD lpdwGopherType
);

Parameters

lpszLocator

A Gopher locator string to parse.

lpdwGopherType

Receives the type of the locator.  This is a bitmask of any of the following:
Value Meaning
GOPHER_TYPE_TEXT_FILE The item is an ASCII text file.
GOPHER_TYPE_DIRECTORY The item is a directory of additional Gopher items.
GOPHER_TYPE_CSO The item is a CSO phone book server.
GOPHER_TYPE_ERROR
GOPHER_TYPE_MAC_BINHEX The item is a Macintosh file in BINHEX format.
GOPHER_TYPE_DOS_ARCHIVE The file is a DOS archive file.
GOPHER_TYPE_UNIX_UUENCODED The item is a UUENCODED file.
GOPHER_TYPE_INDEX_SERVER The item refers to an index server.
GOPHER_TYPE_TELNET The item refers to a telnet server.
GOPHER_TYPE_BINARY The item is a binary file.
GOPHER_TYPE_REDUNDANT
GOPHER_TYPE_TN3270 The item is a TN3270 server.
GOPHER_TYPE_GIF The item is a GIF graphics file.
GOPHER_TYPE_IMAGE The item is an image file.
GOPHER_TYPE_BITMAP The item is a bitmap file.
GOPHER_TYPE_MOVIE The item is a movie file.
GOPHER_TYPE_SOUND The item is a sound file.
GOPHER_TYPE_GOPHER_PLUS The item is a Gopher+ item

.
Remarks

GopherGetLocatorType returns information about the item referenced by a Gopher locator.  Note that it
is possible for multiple attributes to be set on a file.  For example, both GOPHER_TYPE_TEXT_FILE 
and GOPHER_TYPE_GOPHER_PLUS are set for a text file stored on a Gopher+ server..

See Also

47



Internet Extensions for Win32 Preliminary Draft: Subject to Change

6.3GopherFindFirstFile

Given a Gopher locator and some search criteria, the GopherFindFirstFile function creates a session 
with the server and locate the requested documents, binary files, index servers or directory trees.

HINTERNET GopherFindFirstFile(
 HINTERNET hGopherSession,
 LPCTSTR lpszLocator,
 LPCTSTR lpszSearchString,
 LPGOPHER_FIND_DATA lpGopherFindData
);

Parameters

hGopherSession

Handle to a Gopher session returned by InternetConnect.

lpszLocator

Name of the item to locate. This parameter may be any of the following:

· a Gopher locator returned in the lpGopherFindData.Locator field from a previous call to this 
function or InternetFindNextFile;

· a NULL pointer or zero-length string indicating that we are returning the top-most information 
from a Gopher server;

· a locator created by the GopherCreateLocator function.

lpszSearchString

If this request is to an index server, lpszSearchString specifies the strings for which to search. If the 
request is not to an index server, lpszSearchString should be NULL.

lpGopherFindData

Pointer to application-supplied buffer which will be filled with a GOPHER_FIND_DATA structure.

Return Value

If successful a valid search handle, else NULL, in which case more information will be available from 
the GetLastError and InternetGetLastResponseInfo functions.

Comments

GopherFindFirstFile closely resembles the Win32 function FindFirstFile.  It creates a connection with 
a Gopher server and then returns a single structure containing information about the first Gopher object 
referenced by the locator string.

After calling GopherFindFirstFile, to get the first Gopher object in an enumeration, use the 
InternetFindNextFile to retrieve subsequent Gopher objects.

Use the InternetCloseHandle function to close the handle returned from GopherFindFirstFile.  If there 
are any pending operations described by the handle when the application calls InternetCloseHandle, 
they are canceled or marked close-pending.  Any open sessions will be terminated, and any data waiting 
to be indicated to the caller will be discarded.  Any allocated buffers will be freed.

48



Internet Extensions for Win32 Preliminary Draft: Subject to Change

See Also

InternetFindNextFile

49



Internet Extensions for Win32 Preliminary Draft: Subject to Change

6.4 GopherOpenFile

The GopherOpenFile function starts reading a Gopher data file from a Gopher server.

HINTERNET GopherOpenFile(
 HINTERNET hGopherSession,
 LPCTSTR lpszLocator,
 LPCTSTR lpszView
);

Parameters

hInternetSession

Handle to a Gopher session returned by InternetConnect.

lpszLocator

String identifying the file to “open”.  Typically, this locator will have been returned from a call to 
GopherFindFirstFile or InternetFindNextFile.  Since the Gopher protocol has no concept of a 
“current directory,” the locator is always fully qualified.

lpszView

If several views of the file exist at the server, this parameter describes which file view to open.  If 
lpszView is NULL, the default file view is used.

Return Value

NULL if the file cannot be opened.  Use GetLastError or InternetGetLastResponseInfo to determine 
the cause of the error.

Remarks

“Opens” a file at a Gopher server.  Since a file cannot be actually opened or locked at a server, this call 
simply associates location information with a handle that can be used for file-based operations, such as 
InternetReadFile or GopherGetAttribute.

Use the InternetCloseHandle function to close the handle returned from GopherOpenFile.  If there are 
any pending operations described by the handle when the application calls InternetCloseHandle, they 
are canceled or marked close-pending.  Any open sessions will be terminated, and any data waiting to be 
indicated to the caller will be discarded.  Any allocated buffers will be freed.

See Also

InternetReadFile, GopherGetAttribute

50



Internet Extensions for Win32 Preliminary Draft: Subject to Change

6.5GopherGetAttribute

The GopherGetAttribute function allows an application to retrieve specific attribute information from 
the server.

BOOL GopherGetAttribute(
 HINTERNET hGopherSession,
 LPCTSTR lpszLocator,
 LPCTSTR lpszInformation,
 LPBYTE lpBuffer,
 DWORD dwBufferLength,
 LPDWORD lpdwBytesReturned,
 GOPHER_ATTRIBUTE_ENUMERATOR lpfnEnumerator
);

Parameters

hInternetSession

Handle to an Gopher session returned by InternetConnect.

lpszLocator

String identifying the item at Gopher server about which to return attribute information.

lpszInformation

Pointer to space-delimited string specifying names of attributes to return.

lpBuffer

Pointer to user-supplied buffer into which attribute information is retrieved.

dwBufferLength

Size of lpBuffer in bytes.

lpdwBytesReturned

Number of bytes read into lpBuffer.

lpfnEnumerator

Points to a callback  enumeration function  which is called for each attribute  of the locator.   This
parameter is optional; if NULL, then all the Gopher attribute information is placed into lpBuffer.  If
lpfnEnumerator is specified, then the callback function is called once for each attribute of the object.
The callback function is passed a pointer  to a single GOPHER_ATTRIBUTE_TYPE structure for
each call.   The enumeration callback  allows the application to avoid having to parse the Gopher
attribute information.

Return Value

TRUE if request is satisfied, else FALSE.  Use GetLastError or InternetGetLastResponseInfo to 
discover more information about the error.

Remarks

51



Internet Extensions for Win32 Preliminary Draft: Subject to Change

Typically, applications will make this call following a GopherFindFirstFile or InternetFindNextFile 
call which will therefore request cached information.

The GOPHER_ATTRIBUTE_ENUMERATOR function has the following syntax:

BOOL GopherAttributeEnumerator(
 LPGOPHER_ATTRIBUTE_TYPE lpAttributeInformation,
 DWORD dwError
);

lpAttributeInformation points to a buffer which contains a single GOPHER_ATTRIBUTE_TYPE 
structure.  The lpBuffer parameter to GopherGetAttributes is used for storing this structure.  dwError is 
NO_ERROR (zero) if the attribute was parsed and written to the buffer successfully, or an error code if a 
problem was encountered.  Returning FALSE from this function stops the enumeration immediately.

See Also

52



Internet Extensions for Win32 Preliminary Draft: Subject to Change

7HTTP APIs
7.1HttpOpenRequest

The HttpOpenRequest function opens an HTTP request handle.

HINTERNET HttpOpenRequest(
 HINTERNET hInternetSession,
 LPCTSTR lpszVerb,
 LPCTSTR lpszObjectName,
 LPCTSTR lpszVersion,
 LPCTSTR lpszReferer,
 LPCTSTR FAR * lplpszAcceptTypes,
);

Parameters

hInternetSession

Handle to an HTTP session returned by InternetConnect.

lpszVerb

The verb to use in the request.

lpszObjectName

The target object of the specified verb. This is typically a file name, an executable module, or a 
search specifier.

lpszVersion

The HTTP version for the request. The high word defines the minor version and the low word 
defines the major version.  Must be HTTP_VERSION in version 1.0 of the Internet Extensions for 
Win32.

lpszReferer

Specifies the address (URI) of the document from which the URI in the request (lpszObjectName) 
was obtained.  May be NULL, in which case no referer is specified.

lplpszAcceptTypes

Points to a NULL-terminated array of LPCTSTR pointers to content-types accepted by the client. 
This value may be NULL in which case no accept types are.  Servers interpret a lack of accept types 
to indicate that the client only accepts documents of type “text/*”, that is, only text documents, not 
pictures or other binary files.

Return Value

A valid (non-NULL) HTTP request handle if successful, NULL otherwise. Extended error information is 
available via the GetLastError API.

Remarks

This function creates a new HTTP request handle and stores the specified parameters in that handle.

53



Internet Extensions for Win32 Preliminary Draft: Subject to Change

An HTTP request handle encapsulates a request to be sent to an HTTP server.  The HTTP request handle 
contains all RFC822/MIME/HTTP headers to be sent as part of the request.

Use the InternetCloseHandle function to close the handle returned by HttpOpenRequest.  
InternetCloseHandle the handle cancels all outstanding I/O on the handle.

The lpszCallerApplicationName parameter to InternetOpen is used as the referrer for the HTTP request.

See Also

InternetOpen, InternetCloseHandle, HttpSendRequest, HttpAddRequestHeaders, InternetReadFile,
HttpQueryInfo.

54



Internet Extensions for Win32 Preliminary Draft: Subject to Change

7.2HttpAddRequestHeaders

The HttpAddRequestHeaders function adds one or more HTTP request headers to the HTTP request 
handle.

BOOL HttpAddRequestHeaders(
 HINTERNET hHttpRequest,
 LPCTSTR lpszHeaders,
 DWORD dwHeadersLength
);

Parameters

hHttpRequest

An open HTTP request handle returned by HttpOpenRequest.

lpszHeaders

The headers to append to the request. Each header must be terminated by a CR/LF pair.

dwHeadersLength

The length (in characters) of lpszHeaders. If this is -1L, then lpszHeaders is assumed to be zero 
terminated (ASCIIZ) and the length is computed.

Remarks

This function appends additional “free format” headers to the HTTP request handle. This API is intended 
for use by sophisticated clients that need detailed control over the exact request sent to the HTTP server.

Return Value

TRUE if the function is successful, FALSE otherwise. Extended error information is available via the 
GetLastError() API.

See Also

HttpOpenRequest, HttpSendRequest.

55



Internet Extensions for Win32 Preliminary Draft: Subject to Change

7.3HttpSendRequest

The HttpSendRequest function sends the specified request to the HTTP server.

BOOL HttpSendRequest(
 HINTERNET hHttpRequest,
 LPCTSTR lpszHeaders,
 DWORD dwHeadersLength,
 LPVOID lpOptional,
 DWORD dwOptionalLength
);

Parameters

hHttpRequest

An open HTTP request handle returned by HttpOpenRequest.

lpszAdditional

Additional headers to be appended to the request. This may be NULL if there are no additional 
headers to append.

dwAdditionalLength

The length (in characters) of the additional headers. If this is -1L and lpszAdditional is non-NULL, 
then lpszAdditional is assumed to be zero terminated (ASCIIZ) and the length is calculated.

lpOptional

Any optional data to send immediately after the request headers. This is typically used for POST and 
PUT operations. This may be NULL if there is no optional data to send.

dwOptionalLength

The length (in BYTEs) of the optional data. This may be zero if there is no optional data to send.

Remarks

This function sends the specified request to the HTTP server. This function allows the client to specify 
additional RFC822/MIME/HTTP headers to send along with the request. 

This function also allows the client to specify “optional” data to send to the HTTP server immediately 
following the request headers. This feature is typically used for “write” operations such as PUT and 
POST.

After the request is sent, this function reads the status code and response headers from the HTTP server. 
These headers are maintained internally to the request handle, and are available to client applications via 
the HttpQueryInfo API.

Return Value

TRUE if the function is successful, FALSE otherwise. Extended error information is available via the 
GetLastError API.

See Also

56



Internet Extensions for Win32 Preliminary Draft: Subject to Change

HttpOpenRequest, InternetReadFile, HttpQueryInfo.

57



Internet Extensions for Win32 Preliminary Draft: Subject to Change

7.4HttpQueryInfo

The HttpQueryInfo function queries information about an HTTP request.

BOOL HttpQueryInfo(
 HINTERNET hHttpRequest,
 DWORD dwInfoLevel,
 LPVOID lpBuffer,
 LPDWORD lpdwBufferLength
);

Parameters

hHttpRequest

An open HTTP request handle returned by HttpOpenRequest().

dwInfoLevel

One of the HTTP_QUERY_* values indicating the attribute to query.

lpBuffer

Pointer to the buffer that will receive the information.

lpdwBufferLength

On entry, points to a value containing the length (in BYTEs) of the data buffer. On exit, points to a 
value containing the length (in BYTEs) of the information written to the buffer.

Remarks

Most info levels return simple values. HTTP_QUERY_CONTENT_LENGTH, for example, returns an 
ASCII string representing the size (in BYTEs) of the returned object.

HTTP_QUERY_RAW_HEADERS is not so simple. This info level allows a client to access the raw 
RFC822/MIME/HTTP headers returned by the HTTP server. On entry to this API, lpBuffer points to the 
field name of the header to retrieve (i.e. “Accept:”). If lpBuffer points to an empty string (i.e. “”), then 
all headers are returned.

Return Value

TRUE if the function is successful, FALSE otherwise. Extended error information is available via the 
GetLastError API.

See Also

HttpOpenRequest.

58



Internet Extensions for Win32 Preliminary Draft: Subject to Change

8Archie APIs
8.1ArchieFindFirstFile*

The ArchieFindFirstFile* function processes an Archie query on given set of hosts, searching for 
instances specified by search string and returns a handle to the result.

HINTERNET ArchieFindFirstFile(
 HINTERNET hArchieSession,
 LPCTSTR *lplpszHosts,
 LPCTSTR lpszSearchString,
 DWORD dwMaxHits,
 DWORD dwOffset,
 DWORD dwPriority,
 ARCHIE_SEARCH_TYPE SearchType,
 LPARCHIE_FIND_DATA lpFindData,
 LPDWORD lpdwNumberFound,
 DWORD dwContext
);

Parameters

hArchieSession

A handle to an Internet session returned from InternetOpen.

lplpszHosts

Pointer to an array of null terminated character strings. This list is to be terminated with a string with
two nulls in it. These strings contain the name of archie hosts to use for conducting the search. If 
plpszHosts is NULL, all the default Archie servers are used for the search.

lpszSearchString

Points to the search string.  The search string may be a plain string or may contain standard regular 
expression wildcard symbols ( wildcards like ‘*’, ‘.’ and optional parentheses).  This is used in 
conjunction with SearchType..

dwMaxHits

Specifies the maximum number of entries to retrieve per archie server among all matched entries. 
The parameter is used with dwOffset specified to index into the list of matched entries. This limits  
the number of entries pulled for certain worst cases like regular expression  or substring  search with 
a single character. If  unspecified (negative), a default of 30 is assumed.

dwOffset

Offset in the list of entries on each server from where to start collecting matched entries.  The default
is offset 0.

dwPriority

Gives the Archie server an indication of the priority to place on the search.  It can be one of 
ARCHIE_PRIORITY_LOW, ARCHIE_PRIORITY _MEDIUM or ARCHIE_PRIORITY _HIGH.

SearchType

Specifies type of search.  The following values are possible:

59



Internet Extensions for Win32 Preliminary Draft: Subject to Change

Value Meaning

ArchieExact Matches all filenames that are exactly same as 
search string.

ArchieRegexp Matches filenames using regular expression 
given in search string.

ArchieExactOrRegexp Matches filenames exact or based on regular 
expression.

ArchieSubstring Matches all filenames with given search string 
as a substring.

ArchieExactOrSubstring Matches all filenames exact or substring based.

ArchieCaseSubstring Matches all filenames like ArchiestSubstring but
is case sensitive.

ArchieExactOrCaseSubstring Matches all filenames exact or  like 
ArchiestSubstring but case sensitive.

lpFindData

Points to an ARCHIE_FIND_DATA structure that is filled with the first entry from the query.

lpdwNumberFound

This parameter on successful return contains the number of matches found for given keyword.

dwContext

Application-defined value that associates this search with any application data.  This would only be 
used if the calling thread has already set up a Status Callback with InternetSetStatusCallback.

Return Value
On success,  this function returns a handle to the archie client result.  Otherwise returns NULL. 
Applications should use GetLastError to retrieve the error code.

Remarks

This function is a blocking call.  It performs a vectored search across the supplied list of hosts or all the 
hosts for given search string with given search criteria. It collects the responses from the hosts, parses 
them and constructs a list of internal objects containing the location and attribute information for files. 
The application can use the returned handle to access the file information.  Threads of a single process do
not share any data across calls to ArchieFindFirstFile*.

Use the InternetFindNextFile to continue enumerating the information returned from the Archie servers.

Use the InternetCloseHandle function to close the handle returned from ArchieFindFirstFile*.  
InternetCloseHandle the handle frees any resources allocated for the search.

See Also

InternetCloseHandle, InternetFindNextFile, InternetSetStatusCallback

60



Internet Extensions for Win32 Preliminary Draft: Subject to Change

9Structure Definitions
9.1GOPHER_FIND_DATA

typedef struct {
    TCHAR cDisplayString[MAX_GOPHER_DISPLAY_TEXT + 1];
    DWORD dwGopherType;
    DWORD dwSizeLow;
    DWORD dwSizeHigh;
    FILETIME ftLastModificationTime;
    TCHAR cLocator[MAX_GOPHER_LOCATOR_LENGTH + 1];
} GOPHER_FIND_DATA, FAR *LPGOPHER_FIND_DATA;

The GopherFindFirstFile and InternetFindNextFile functions return GOPHER_FIND_DATA 
structures.  The fields of GOPHER_FIND_DATA have the following meanings:

Members

cDisplayString

A friendly name that identifies the object.  Display this string to the user for selection.

dwGopherType

A mask of flags which describe the item returned.

dwFileSizeLow

The low 32 bits of the file size.

dwFileSizeHigh

The high 32 bits of the file size.

ftLastModificationTime

The time the file was last modified.

cLocator

A locator that identifies the file.  Pass this locator to GopherOpenFile or GopherFindFirstFile.

See Also

GopherFindFirstFile

61



Internet Extensions for Win32 Preliminary Draft: Subject to Change

9.2GOPHER_ATTRIBUTE_TYPE

typedef struct {
    LPCTSTR lpszCategoryName
    DWORD dwAttributeName
    union {
        GOPHER_ADMIN_ATTRIBUTE Admin;
        GOPHER_MOD_DATE_ATTRIBUTE ModDate;
        GOPHER_SCORE_ATTRIBUTE Score;
        GOPHER_SCORE_RANGE_ATTRIBUTE ScoreRange;
        GOPHER_SITE_ATTRIBUTE Site;
        GOPHER_ORGANIZATION_ATTRIBUTE Organization;
        GOPHER_LOCATION_ATTRIBUTE Location;
        GOPHER_GEOGRAPHICAL_LOCATION_ATTRIBUTE GeographicalLocation;
        GOPHER_TIMEZONE_ATTRIBUTE TimeZone;
        GOPHER_PROVIDER_ATTRIBUTE Provider;
        GOPHER_VERSION_ATTRIBUTE Version;
        GOPHER_ABSTRACT_ATTRIBUTE Abstract;
        GOPHER_VIEW_ATTRIBUTE View;
        GOPHER_VERONICA_ATTRIBUTE Veronica;
        GOPHER_UNKNOWN_ATTRIBUTE Unknown;
    } AttributeType;
} GOPHER_ATTRIBUTE_TYPE, *LPGOPHER_ATTRIBUTE_TYPE;

The GOPHER_ATTRIBUTE_TYPE structure contains the relevant information for a single Gopher 
attribute for an object. 

Members

lpszCategoryName

The Gopher name for the attribute, for example “+ADMIN”.

dwAttribute

Defines the structure that is contained in the AttributeType member of 
GOPHER_ATTRIBUTE_TYPE, for example GOPHER_ATTRIBUTE_ADMIN.

AttributeType

The actual setting for the Gopher attribute.  The specific value of AttributeType depends on the 
dwAttribute member.  The definitions of the various attribute structures is available in wininet.h.

See Also

GopherGetAttributes

62



Internet Extensions for Win32 Preliminary Draft: Subject to Change

9.3ARCHIE_FIND_DATA

typedef struct {
    DWORD dwAttributes;
    DWORD dwSize;
    FILETIME ftLastFileModTime;
    FILETIME ftLastHostModTime;
    DWORD dwTransferType;
    ARCHIE_ACCESS_METHOD AccessMethod;
    TCHAR cHostType[ARCHIE_MAX_HOST_TYPE_LENGTH];
    TCHAR cHostName[ARCHIE_MAX_HOST_NAME_LENGTH];
    TCHAR cHostAddr[ARCHIE_MAX_HOST_ADDR_LENGTH];
    TCHAR cFileName[ARCHIE_MAX_PATH_LENGTH];
    TCHAR cUserName[ARCHIE_MAX_USERNAME_LENGTH];
    TCHAR cPassword[ARCHIE_MAX_PASSWORD_LENGTH];
} ARCHIE_FIND_DATA, *LPARCHIE_FIND_DATA;

The ARCHIE_FIND_DATA structure is the information returned from all Archie requests.  The fields 
are defined as follows:

Members

dwAttributes

The file attributes, defined in Win32 file attribute bits.

dwSize

The file size in bytes.

ftLastFileModTime

The time the file was last modified.

ftLastHostModTime

The time the file was last modified.

TransferType

The type of transfer to use when retrieving the file.  The following transfer types are possible:

ArchieTransferUnknown Unknown transfer type
ArchieTransferBinary Binary transfer type
ArchieTransferAscii Text-mode (Ascii) transfer type

AccessMethod

The method to use to retrieve the file.  The following access methods are possible:

ArchieError
ArchieAftp Anonymous FTP
ArchieFtp Regular FTP
ArchieNfs NFS File System
ArchieKnfs Kerberized NFS
ArchiePfs Andrew File System

cHostType

63



Internet Extensions for Win32 Preliminary Draft: Subject to Change

A string that identifies the type of host that has the file.

cHostName

The name of the host that has the file.

cHostAddr

The host’s Internet address.

cFileName

A fully qualified path to the file.

cUserName

A user name to use when the file must be accessed with non-anonymous FTP.

cPassword

A password to use when using non-anonymous FTP to access the file.

See Also

ArchieFindFirstFile

64


	1 Background and Motivation
	1.1 Goals
	1.2 Non-Goals

	2 API Overview
	2.1 Handles
	2.2 MIME Integration
	2.3 Error Handling
	2.4 Multi-threaded Access
	2.5 Canceling Requests
	2.6 Unicode Support

	3 General Internet APIs
	3.1 InternetOpen
	3.2 InternetCloseHandle
	3.3 InternetConnect
	3.4 InternetOpenUrl*
	3.5 InternetReadFile
	3.6 InternetWriteFile
	3.7 InternetFindNextFile
	3.8 InternetQueryOption*
	3.9 InternetSetOption*
	3.10 InternetGetLastResponseInfo
	3.11 InternetSetStatusCallback*

	4 Mime APIs
	4.1 MimeCreateAssociation
	4.2 MimeDeleteAssociation
	4.3 MimeGetAssociation

	5 FTP APIs
	5.1 FtpFindFirstFile
	5.2 FtpGetFile
	5.3 FtpPutFile
	5.4 FtpDeleteFile
	5.5 FtpRenameFile
	5.6 FtpOpenFile
	5.7 FtpCreateDirectory
	5.8 FtpRemoveDirectory
	5.9 FtpSetCurrentDirectory
	5.10 FtpGetCurrentDirectory
	5.11 FtpCommand

	6 Gopher APIs
	6.1 GopherCreateLocator
	6.2 GopherGetLocatorType
	6.3 GopherFindFirstFile
	6.4 GopherOpenFile
	6.5 GopherGetAttribute

	7 HTTP APIs
	7.1 HttpOpenRequest
	7.2 HttpAddRequestHeaders
	7.3 HttpSendRequest
	7.4 HttpQueryInfo

	8 Archie APIs
	8.1 ArchieFindFirstFile*

	9 Structure Definitions
	9.1 GOPHER_FIND_DATA
	9.2 GOPHER_ATTRIBUTE_TYPE
	9.3 ARCHIE_FIND_DATA


